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1 Jensen’s Inequality

Recall the statement of Jensen’s Inequality:

Theorem 1.1. Let S C R"™ be a conver set and X be a random variable over S. Then for convex f : S — R, we
have: B [f(X)] > f(E[X]) . If f is concave, we instead have E [f(X)] < f(E[X]) .

Exercise 1.2. Prove Jensen’s inequality when X has discrete support.

Solution: W e prove it for convex f. The same argument holds for concave. Let k be the support size. We
prove this by induction on k. Let «; be the probabilities associated with support elements z; € S. Our first
step when trying to prove anything is to write down what it is we want to prove:

k k
Want To Show: V{ozl,...ozk:Zaizl},xl,...,xk, Zoz1f(o:l)2f<2z7> .
i=1 i=1

Base case: k=2 Suppose the size of the support is 2. Then:

E[f(X)] = aif(z1) + (1 — 1) f(22) (1)
by convexity of f > flazy + (1 —a)xs). (2)
Inductive Assumption Next, we make the inductive assumption. Let us assume that Vaq, ..., ag such that

Zle a; =1 and Y{z1,...,2x} C S*, we have Zle aif(zi) > f (Zle xl) .

Induction We now perform the induction. We consider fill a;f(x;) . Let us define o = ay + ag+1 . Then,
since Y1 o = 1, we have that 37" a; + o/ = 1. Further, define 2/ = %{w . Now, we have:
k+1
D aif(@i) = arf(@1) + - + ok 1 f(@r-1) + oxfxx) + angr f(Tr41) (3)
i=1
by convexity of f >arf(ry) + - +ag_1f(zp_1) + ' f(2') (4)
by inductive assumption > fagwy + -+ ap_1xp_1 + 'z’ (5)
= flaazi + + Qg 1Tp—1 + Tk + U1 Th41) (6)
Thus, we have shown this for all discrete supports.
Next, we use Jensen’s Inequality to prove two fundmental inequalities.
Exercise 1.3. (AM-GM Inequality) For z1,...,x, >0,
1 1/n

*This document draws heavily on recitation notes developed by Max Ovsiankin when TAing a previous offering of this course.



Solution: C ase 1, if anything is 0, this is trivially true. Case 2, x; > 0V . In this case we can safely take the
log of the left-hand side and use Jensen’s inequality:

log (1(331 gt —|—xn)> > L llog (1) + log (22) + - - - + log () (7

Sl 3

log (I1;,) (8)

From here, we can exponentiate both sides to get the original inequality.

Exercise 1.4. (Young’s Inequality) For a,b > 0,Yp,q € (1,00) such that % + % =1,

Solution: Since 1/p and 1/¢ sum to 1, if we interpret them as probabilities, the right hand side looks like the
expectation of the following random variable:

P
y_1@ wp
b?  w.p.

Then, consider another random variable X :=logY . We have that:

Q=S =

_Jploga w.p.
B qlogb w.p.

Q=S =

Putting these together, we have that logE [Y] = log ( %) and E [logY] = E [X] = ploga- - +qlog b% =
loga+logb. Applying Jensen’s inequality, we have that E [log Y] < logE [Y] and so log ab < log ( + %) . As

before, exponentiating gives us the original inequality.

2 Conditional and Joint Entropy

Recall from lecture the chain rule, H(X,Y) = H(X) + H(Y|X), where H(Y|X) = E, [H(Y|X = x)] and the fact
that conditioning reduces entropy on average, i.e., H(Y) > H(Y|X). Note that the latter fact only holds on average;
indeed, it is possible that for a particular value of x , the entropy actually goes up, but on average it must go down.

For a picture of how conditional and joint entropy relate, we refer to Figure 2.2 in Cover and Thomas (reproduced
here in Figure 1).

This is a useful picture to have in mind regarding the relationships between various quantities of interest. We
have not yet defined I(X;Y'), mutual information, in lecture but at a high level, it measures how much we lose by
representing a joint distribution over two variables by the product of the marginals.

Exercise 2.1. Ezpress H(X,Y) in terms of H(X), H(Y),andI(X;Y).

Solution: T his gives rise to a principle of inclusion-exclusion!

H(X,)Y)=H(X)+HY)-I(X;Y).

Finally, we will get some practice with using the relationships between these quantities to prove statements we’d
like to prove. Recall the binary entropy function:

1 1
Hy(p) =plog;0 + (1 —p)log -—

Exercise 2.2. Show that Hs(p) is concave in p using HY|X) < H(Y).
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FIGURE 2.2. Relationship between entropy and mutual information.

Figure 1: Figure 2.2 from Cover and Thomas

Solution: A s always the best first step is to write down what we wish to prove:
Want To Show: Hy(apy + (1 — a)p2) > aHa(p1) + (1 — ) Ha(p2) - (9)

The right hand side looks like the expectation of a random variable, and the left hand side looks like the
entropy of a Bernoulli random variable that comes up heads with probability ap; + (1 — a)ps . Let us try to
define random variables accordingly. Let us start with:

X — 1 wp. «a .
2 wp,1—«a

Now, we define another variable whose distribution depends on the outcome of X :
v — 0 w.p. px '
1 wp. 1-px
Let us compute H(Y) and H(Y|X). First, we have:

HY|X)=P[X =1HY|X=1)+P[X = 2] H(Y|X = 2) (10)
= aHs(p1) + (1 — a)Hz(p2) (11)

This is the right hand side of Eqn. 9. Without conditioning, we have that Y takes value 0 if X = 1 and a coin
of bias p; comes up heads or if X = 2 and a coin of bias ps comes up heads. Similarly, Y takes value 1 if X =1
and a coin of bias p; comes up tails or if X = 2 and a coin of bias ps comes up tails. Thus:

v 0 wp. api+(1—a)ps
I wp.a(l—p)+(1—-a)(d—ps)

This variable has entropy H(Y) = Ha(ap; + (1 — a) p2).
Since we know that H(Y) > H(Y|X), we have that Ha(ap; + (1 — a)p2) > aHs(p1) + (1 — «)Ha(p2),
implying that Ha(p) is concave.




