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1 Jensen’s Inequality

Recall the statement of Jensen’s Inequality:

Theorem 1.1. Let S ⊆ Rn be a convex set and X be a random variable over S. Then for convex f : S → R, we
have: E [f(X)] ≥ f (E [X]) . If f is concave, we instead have E [f(X)] ≤ f (E [X]) .

Exercise 1.2. Prove Jensen’s inequality when X has discrete support.

Solution: W e prove it for convex f . The same argument holds for concave. Let k be the support size. We
prove this by induction on k . Let αi be the probabilities associated with support elements xi ∈ S . Our first
step when trying to prove anything is to write down what it is we want to prove:

Want To Show: ∀{α1, . . . αk :
∑

αi = 1} , x1, . . . , xk

k∑
i=1

αif(xi) ≥ f

(
k∑

i=1

xi

)
.

Base case: k = 2k = 2k = 2 Suppose the size of the support is 2. Then:

E [f(X)] = α1f(x1) + (1− α1)f(x2) (1)

by convexity of f ≥ f(αx1 + (1− α)x2) . (2)

Inductive Assumption Next, we make the inductive assumption. Let us assume that ∀α1, . . . , αk such that∑k
i=1 αi = 1 and ∀{x1, . . . , xk} ⊂ Sk , we have

∑k
i=1 αif(xi) ≥ f

(∑k
i=1 xi

)
.

Induction We now perform the induction. We consider
∑k+1

i=1 αif(xi) . Let us define α′ = αk + αk+1 . Then,

since
∑k+1

i=1 αi = 1 , we have that
∑k−1

i=1 αi + α′ = 1 . Further, define x′ = αkxk+αk+1xk+1

αk+αk+1
. Now, we have:

k+1∑
i=1

αif(xi) = α1f(x1) + · · ·+ αk−1f(xk−1) + αkf(xk) + αk+1f(xk+1) (3)

by convexity of f ≥ α1f(x1) + · · ·+ αk−1f(xk−1) + α′f(x′) (4)

by inductive assumption ≥ f (α1x1 + · · ·+ αk−1xk−1 + α′x′) (5)

= f (α1x1 + · · ·+ αk−1xk−1 + αkxk + αk+1xk+1) (6)

Thus, we have shown this for all discrete supports.

Next, we use Jensen’s Inequality to prove two fundmental inequalities.

Exercise 1.3. (AM-GM Inequality) For x1, . . . , xn ≥ 0 ,

1

n
(x1 + x2 + · · ·+ xn) ≥ (x1 · x2 · · · · · xn)

1/n

∗This document draws heavily on recitation notes developed by Max Ovsiankin when TAing a previous offering of this course.
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Solution: C ase 1, if anything is 0, this is trivially true. Case 2, xi > 0 ∀ i . In this case we can safely take the
log of the left-hand side and use Jensen’s inequality:

log

(
1

n
(x1 + x2 + · · ·+ xn)

)
≥ 1

n
(log (x1) + log (x2) + · · ·+ log (xn)) (7)

=
1

n
log (Πn

i=1) (8)

From here, we can exponentiate both sides to get the original inequality.

Exercise 1.4. (Young’s Inequality) For a, b ≥ 0 ,∀p, q ∈ (1,∞) such that 1
p + 1

q = 1 ,

ab <
ap

p
+

bq

q

Solution: S ince 1/p and 1/q sum to 1, if we interpret them as probabilities, the right hand side looks like the
expectation of the following random variable:

Y =

{
ap w.p. 1

p

bq w.p. 1
q

.

Then, consider another random variable X := log Y . We have that:

X =

{
p log a w.p. 1

p

q log b w.p. 1
q

.

Putting these together, we have that logE [Y ] = log
(

ap

p + bq

q

)
and E [log Y ] = E [X] = p log a · 1p +q log b 1q =

log a+ log b . Applying Jensen’s inequality, we have that E [log Y ] ≤ logE [Y ] and so log ab ≤ log
(

ap

p + bq

q

)
. As

before, exponentiating gives us the original inequality.

2 Conditional and Joint Entropy

Recall from lecture the chain rule, H(X,Y ) = H(X) + H(Y |X) , where H(Y |X) = Ex [H(Y |X = x)] and the fact
that conditioning reduces entropy on average, i.e., H(Y ) ≥ H(Y |X) . Note that the latter fact only holds on average;
indeed, it is possible that for a particular value of x , the entropy actually goes up, but on average it must go down.

For a picture of how conditional and joint entropy relate, we refer to Figure 2.2 in Cover and Thomas (reproduced
here in Figure 1).

This is a useful picture to have in mind regarding the relationships between various quantities of interest. We
have not yet defined I(X;Y ), mutual information, in lecture but at a high level, it measures how much we lose by
representing a joint distribution over two variables by the product of the marginals.

Exercise 2.1. Express H(X,Y ) in terms of H(X), H(Y ), andI(X;Y ) .

Solution: T his gives rise to a principle of inclusion-exclusion!

H(X,Y ) = H(X) +H(Y )− I(X;Y ) .

Finally, we will get some practice with using the relationships between these quantities to prove statements we’d
like to prove. Recall the binary entropy function:

H2(p) = p log
1

p
+ (1− p) log

1

1− p
.

Exercise 2.2. Show that H2(p) is concave in p using H(Y |X) ≤ H(Y ) .
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Figure 1: Figure 2.2 from Cover and Thomas

Solution: A s always the best first step is to write down what we wish to prove:

Want To Show: H2(αp1 + (1− α)p2) ≥ αH2(p1) + (1− α)H2(p2) . (9)

The right hand side looks like the expectation of a random variable, and the left hand side looks like the
entropy of a Bernoulli random variable that comes up heads with probability αp1 + (1 − α)p2 . Let us try to
define random variables accordingly. Let us start with:

X =

{
1 w.p. α

2 w.p, 1− α
.

Now, we define another variable whose distribution depends on the outcome of X :

Y =

{
0 w.p. pX

1 w.p. 1− pX
.

Let us compute H(Y ) and H(Y |X) . First, we have:

H(Y |X) = P [X = 1]H(Y |X = 1) + P [X = 2]H(Y |X = 2) (10)

= αH2(p1) + (1− α)H2(p2) (11)

This is the right hand side of Eqn. 9. Without conditioning, we have that Y takes value 0 if X = 1 and a coin
of bias p1 comes up heads or if X = 2 and a coin of bias p2 comes up heads. Similarly, Y takes value 1 if X = 1
and a coin of bias p1 comes up tails or if X = 2 and a coin of bias p2 comes up tails. Thus:

Y =

{
0 w.p. αp1 + (1− α) p2

1 w.p. α (1− p1) + (1− α) (1− p2)
.

This variable has entropy H(Y ) = H2(αp1 + (1− α) p2) .
Since we know that H(Y ) ≥ H(Y |X) , we have that H2(αp1 + (1 − α) p2) ≥ αH2(p1) + (1 − α)H2(p2) ,

implying that H2(p) is concave.
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